Chem 108: Class/ Lab Week 11

Pick a vial and a plastic dropper Using the vial number, sign-in on the Lab roster

TODAY:

Fluid Exchange
 (Handout) *Due Next Lab*2) Acid-Base Equilibrium Experiment
 (Handout)
 Due & signed Today

Chem 108: Class/ Lab Week 11

Follow Instructions

http://chemconnections.org/general/chem120
/fluid-ex.108.html

Acid-Base Indicators

Indicators Natural Indicators

QUESTION

In a solution of water at a particular temperature the [H+] may be $1.2\times10^{-6}\,M.$ What is the [OH-] in the same solution? Is the solution acidic, basic, or neutral?

- A. 1.2×10^{-20} M; acidic
- B. 1.2×10^{-20} M; basic
- C. 8.3×10^{-9} M; basic D. 8.3×10^{-9} M; acidic

ANSWER

D. correctly shows the OH^- molarity and classifies the solution as acidic. $K_w=[H^+][OH^-]=1.0\times 10^{-14}$ at $25^\circ C.$ The H^+ molarity is approximately 1,000 times greater than the OH -concentration. Solutions with higher H+ concentrations than OH- are acidic.

QUESTION

An environmental chemist obtains a sample of rainwater near a large industrial city. The [H+] was determined to be 3.5×10^{-6} M. What is the pH, pOH, and [OH-] of the solution?

- A. pH = 5.46; pOH = 8.54; $[OH^{-}] = 7.0 \times 10^{-6} \, M$ B. pH = 5.46; pOH = 8.54; $[OH^{-}] = 2.9 \times 10^{-9} \, M$
- C. pH = 12.56; pOH =1.44; [OH⁻] = 3.6 × 10⁻² M D. pH = 8.54; pOH = 5.46; [OH⁻] = 2.9 × 10⁻⁹ M

ANSWER

B. provides all three correct responses. The expression pH = $-\log[H^+]$ can be used to find the pH then: 14.00 = pH +pOH can be used to obtain the pOH. Finally, $[OH^-] = 10$

The pH Scale

[H ⁺]	[OH-]	рН	рОН	acidic or basic?
$7.5\times 10^{-3}M$				
	$3.6 \times 10^{-10} M$			
		8.25		
			5.70	

The pH Scale

[H ⁺]	[OH-]	рН	рОН	acidic or basic?
$7.5 \times 10^{-3} M$	1.3 x10 ⁻¹²	2.1	11.9	Acid
2.8 x10 ⁻⁵	$3.6 \times 10^{-10} M$	4.6	9.4	Acid
5.62 x10 ⁻⁹	1.78 x10 ⁻⁶	8.25	5.75	Base
5.00 x10 ⁻⁹	2.00 x10 ⁻⁶	8.30	5.70	Base

Acid-Base Equilibrium BUFFERS

Dr. Ron Rusay

QUESTION

In the following equilibrium:

 $HCO_3^-(aq) + H_2O(I) \leftrightarrows H_2CO_3(aq) + OH^-(aq)$

- A) HCO_3^- is an acid and H_2CO_3 is its conjugate base.
- B) H₂O is an acid and OH is its conjugate base.
- C) HCO₃- is an acid and OH- is its conjugate base.
- D) H₂O is an acid and H₂CO₃ is its conjugate base.
- E) H₂O is an acid and HCO₃ is its conjugate base.

Answer

In the following equilibrium:

 $HCO_3^-(aq) + H_2O(I) \leftrightarrows H_2CO_3(aq) + OH^-(aq)$

- A) HCO₃- is an acid and H₂CO₃ is its conjugate base.
- B) H₂O is an acid and OH is its conjugate base.
- C) HCO₃- is an acid and OH- is its conjugate base.
- D) H₂O is an acid and H₂CO₃ is its conjugate base.
- E) H₂O is an acid and HCO₃ is its conjugate base.

 $H_2CO_3(aq) / HCO_3^{-1}(aq) / CO_3^{-2}(aq)$

Two VERY IMPORTANT Buffer Systems

 $\begin{tabular}{ll} "Bicarbonate" \\ CO_2(g) + H_2O(l) \leftrightarrows HCO_3^{-1}(aq) + H^{+1}(aq) \leftrightarrows CO_3^{-2}(aq) + H^{+1}(aq) \\ \end{tabular}$

- 1. **Blood:** a human's blood serum volume is relatively small, 4-6 Liters with a narrow pH range, pH = 7.35 - 7.45; pH is maintained through buffering (homeostasis) Have you ever had respiratory alkalosis during an exam?
- 2. Oceans: an extraordinarily large volume of a "salt water" solution with a pH ~ 8.1; maintained through buffering

EQUILIBRIUM

CO₂ & Oceanic Bicarbonate Buffering

 $\mathrm{CO_2}(\mathrm{g}) + \mathrm{H_2O}\left(\mathrm{l}\right) \leftrightarrows \mathrm{HCO_3^{-1}}(\mathrm{aq}) + \mathrm{H^{+1}}(\mathrm{aq}) \leftrightarrows \mathrm{CO_3^{-2}}(\mathrm{aq}) + \mathrm{H^{+1}}(\mathrm{aq})$

Oceans: pH ~ 8.1 and falling

http://www.tos.org/oceanography/issues/issue_archive/22_4.html Increasing CO₂ is decreasing ocean pH; long term effects? http://sos.noaa.gov/datasets/Ocean/ocean_acidification.html

L	.ab: liti	Tius	οQ	ρı	7) <i>ape</i> = =	17;	univer		ma	icat	Οľ
		1						ATT HAND				
		Red Litmus	Blue Litmus	Solut pH Paper	tion pH Indicator	Description						
Α	HCl(aq) stomach acid	red	red	1	2	acid	l l	NH ₄ Cl(aq)				П
В	NaOH(aq) drain cleaner	блие	вис	11	10	base	11	ammonium chloride NH ₃ (aq)			\vdash	\vdash
С	H ₂ O(1) deionized water						K	ammonia (household cleaner)				
_	$H_2O(1) + CO_2(aq)$			-			L	Mg(OH) ₂ Milk of Magnesia				Г
D	carbonated water (Seltzer)						М	Orange juice				-
Е	Na ₂ CO ₃ (aq) baking soda						11					+
F	NaOCl(aq)						N	Mik				_
_	CHyCOOH(aq)			-			0	Saliva (spit) and blood	blue	blue	7.4	
	vinegar NaCl(ag)		<u> </u>	-			P	Vomit	red	red	2.0	
G				_			11	0.4				,
H	salt solution CH ₁ COO-, Na*(aq)] Q	Buffer (pH 7)	red	blue	7.0	(801

Completed Report & Post Lab Questions Due Today:

Laboratory Manual Seven Solution Problem Report Form **pp. 76-80**; DUE Today

POST LAB Form DUE Today

http://www.chemconnections.org/general/chem108/7-Solutions%20Post %20Lab%20form.pdf

Turn in one completed form with the name of each partner who contributed on the

The state of the s											
		Red Litmus	Blue	Solution pH	Description	l -	NH ₄ Cl(aq)				
A	HCl(aq) stomach acid	red	red	1.0	acid	Ľ	ammonium chloride NHv(aq)			6.0	
В	NaOH(aq) drain cleaner	blue	blue	13.0	base	K	ammonia (household cleaner)			10.8	
С	H ₂ O(1) deionized water			7.0		L	Mg(OH) 2 Milk of Magnesia			12.0	
D	H ₂ O(l) + CO ₂ (aq) carbonated water			6.4		М	Orange juice			5.4	
Е	(Seltzer) Na ₂ CO ₃ (aq)			10.1		N	Mik			6.4	
F	baking soda NaOCl(aq)			8.3		0	Saliva (spit) and blood	blue	blue	7.4	
-	CH ₂ COOH(aq)			47		P	Vomit	red	red	2.0	
G H	vinegar NaCl(aq)			7.0		Q	Buffer (pH 7)			7.0	(BOTH: ac & base)
	salt solution CH ₃ COO-, Na+(aq)			9.0							