Chem 108: Class/ Lab Week 11 Pick a vial and a plastic dropper Using the vial number, sign-in on the Lab roster ### TODAY: Fluid Exchange (Handout) *Due Next Lab*2) Acid-Base Equilibrium Experiment (Handout) *Due & signed Today* # Chem 108: Class/ Lab Week 11 Follow Instructions http://chemconnections.org/general/chem120 /fluid-ex.108.html # Acid-Base Indicators # Indicators Natural Indicators # **QUESTION** In a solution of water at a particular temperature the [H+] may be $1.2\times10^{-6}\,M.$ What is the [OH-] in the same solution? Is the solution acidic, basic, or neutral? - A. 1.2×10^{-20} M; acidic - B. 1.2×10^{-20} M; basic - C. 8.3×10^{-9} M; basic D. 8.3×10^{-9} M; acidic ## **ANSWER** D. correctly shows the OH^- molarity and classifies the solution as acidic. $K_w=[H^+][OH^-]=1.0\times 10^{-14}$ at $25^\circ C.$ The H^+ molarity is approximately 1,000 times greater than the OH -concentration. Solutions with higher H+ concentrations than OH- are acidic. # **QUESTION** An environmental chemist obtains a sample of rainwater near a large industrial city. The [H+] was determined to be 3.5×10^{-6} M. What is the pH, pOH, and [OH-] of the solution? - A. pH = 5.46; pOH = 8.54; $[OH^{-}] = 7.0 \times 10^{-6} \, M$ B. pH = 5.46; pOH = 8.54; $[OH^{-}] = 2.9 \times 10^{-9} \, M$ - C. pH = 12.56; pOH =1.44; [OH⁻] = 3.6 × 10⁻² M D. pH = 8.54; pOH = 5.46; [OH⁻] = 2.9 × 10⁻⁹ M # **ANSWER** B. provides all three correct responses. The expression pH = $-\log[H^+]$ can be used to find the pH then: 14.00 = pH +pOH can be used to obtain the pOH. Finally, $[OH^-] = 10$ ## The pH Scale | [H ⁺] | [OH-] | рН | рОН | acidic
or
basic? | |----------------------|--------------------------|------|------|------------------------| | $7.5\times 10^{-3}M$ | | | | | | | $3.6 \times 10^{-10} M$ | | | | | | | 8.25 | | | | | | | 5.70 | | ### The pH Scale | [H ⁺] | [OH-] | рН | рОН | acidic
or
basic? | |------------------------|--------------------------|------|------|------------------------| | $7.5 \times 10^{-3} M$ | 1.3 x10 ⁻¹² | 2.1 | 11.9 | Acid | | 2.8 x10 ⁻⁵ | $3.6 \times 10^{-10} M$ | 4.6 | 9.4 | Acid | | 5.62 x10 ⁻⁹ | 1.78 x10 ⁻⁶ | 8.25 | 5.75 | Base | | 5.00 x10 ⁻⁹ | 2.00 x10 ⁻⁶ | 8.30 | 5.70 | Base | # Acid-Base Equilibrium BUFFERS Dr. Ron Rusay # **QUESTION** In the following equilibrium: $HCO_3^-(aq) + H_2O(I) \leftrightarrows H_2CO_3(aq) + OH^-(aq)$ - A) HCO_3^- is an acid and H_2CO_3 is its conjugate base. - B) H₂O is an acid and OH is its conjugate base. - C) HCO₃- is an acid and OH- is its conjugate base. - D) H₂O is an acid and H₂CO₃ is its conjugate base. - E) H₂O is an acid and HCO₃ is its conjugate base. ### Answer In the following equilibrium: $HCO_3^-(aq) + H_2O(I) \leftrightarrows H_2CO_3(aq) + OH^-(aq)$ - A) HCO₃- is an acid and H₂CO₃ is its conjugate base. - B) H₂O is an acid and OH is its conjugate base. - C) HCO₃- is an acid and OH- is its conjugate base. - D) H₂O is an acid and H₂CO₃ is its conjugate base. - E) H₂O is an acid and HCO₃ is its conjugate base. $H_2CO_3(aq) / HCO_3^{-1}(aq) / CO_3^{-2}(aq)$ ### Two VERY IMPORTANT Buffer Systems $\begin{tabular}{ll} "Bicarbonate" \\ CO_2(g) + H_2O(l) \leftrightarrows HCO_3^{-1}(aq) + H^{+1}(aq) \leftrightarrows CO_3^{-2}(aq) + H^{+1}(aq) \\ \end{tabular}$ - 1. **Blood:** a human's blood serum volume is relatively small, 4-6 Liters with a narrow pH range, pH = 7.35 - 7.45; pH is maintained through buffering (homeostasis) Have you ever had respiratory alkalosis during an exam? - 2. Oceans: an extraordinarily large volume of a "salt water" solution with a pH ~ 8.1; maintained through buffering ### **EQUILIBRIUM** CO₂ & Oceanic Bicarbonate Buffering $\mathrm{CO_2}(\mathrm{g}) + \mathrm{H_2O}\left(\mathrm{l}\right) \leftrightarrows \mathrm{HCO_3^{-1}}(\mathrm{aq}) + \mathrm{H^{+1}}(\mathrm{aq}) \leftrightarrows \mathrm{CO_3^{-2}}(\mathrm{aq}) + \mathrm{H^{+1}}(\mathrm{aq})$ Oceans: pH ~ 8.1 and falling http://www.tos.org/oceanography/issues/issue_archive/22_4.html Increasing CO₂ is decreasing ocean pH; long term effects? http://sos.noaa.gov/datasets/Ocean/ocean_acidification.html | L | .ab: liti | Tius | οQ | ρı | 7 |) <i>ape</i>
= = | 17; | univer | | ma | icat | Οľ | |---|---|------------|----------------|----------------------|----------------------|---------------------|-------|---|------|------|----------|----------| | | | 1 | | | | | | ATT HAND | | | | | | | | Red Litmus | Blue
Litmus | Solut
pH
Paper | tion pH
Indicator | Description | | | | | | | | Α | HCl(aq)
stomach acid | red | red | 1 | 2 | acid | l l | NH ₄ Cl(aq) | | | | П | | В | NaOH(aq)
drain cleaner | блие | вис | 11 | 10 | base | 11 | ammonium chloride
NH ₃ (aq) | | | \vdash | \vdash | | С | H ₂ O(1)
deionized water | | | | | | K | ammonia
(household cleaner) | | | | | | _ | $H_2O(1) + CO_2(aq)$ | | | - | | | L | Mg(OH) ₂
Milk of Magnesia | | | | Г | | D | carbonated water
(Seltzer) | | | | | | М | Orange juice | | | | - | | Е | Na ₂ CO ₃ (aq)
baking soda | | | | | | 11 | | | | | + | | F | NaOCl(aq) | | | | | | N | Mik | | | | _ | | _ | CHyCOOH(aq) | | | - | | | 0 | Saliva (spit) and blood | blue | blue | 7.4 | | | | vinegar
NaCl(ag) | | <u> </u> | - | | | P | Vomit | red | red | 2.0 | | | G | | | | _ | | | 11 | 0.4 | | | | , | | H | salt solution
CH ₁ COO-, Na*(aq) | | | | | |] Q | Buffer (pH 7) | red | blue | 7.0 | (801 | ### Completed Report & Post Lab Questions Due Today: Laboratory Manual Seven Solution Problem Report Form **pp. 76-80**; DUE Today POST LAB Form DUE Today http://www.chemconnections.org/general/chem108/7-Solutions%20Post %20Lab%20form.pdf Turn in one completed form with the name of each partner who contributed on the | The state of s | | | | | | | | | | | | |--|--|---------------|------|-------------|-------------|-----|--------------------------------|------|------|------|----------------------| | | | Red
Litmus | Blue | Solution pH | Description | l - | NH ₄ Cl(aq) | | | | | | A | HCl(aq)
stomach acid | red | red | 1.0 | acid | Ľ | ammonium chloride
NHv(aq) | | | 6.0 | | | В | NaOH(aq)
drain cleaner | blue | blue | 13.0 | base | K | ammonia
(household cleaner) | | | 10.8 | | | С | H ₂ O(1)
deionized water | | | 7.0 | | L | Mg(OH) 2
Milk of Magnesia | | | 12.0 | | | D | H ₂ O(l) + CO ₂ (aq)
carbonated water | | | 6.4 | | М | Orange juice | | | 5.4 | | | Е | (Seltzer)
Na ₂ CO ₃ (aq) | | | 10.1 | | N | Mik | | | 6.4 | | | F | baking soda
NaOCl(aq) | | | 8.3 | | 0 | Saliva (spit) and blood | blue | blue | 7.4 | | | - | CH ₂ COOH(aq) | | | 47 | | P | Vomit | red | red | 2.0 | | | G
H | vinegar
NaCl(aq) | | | 7.0 | | Q | Buffer (pH 7) | | | 7.0 | (BOTH: ac
& base) | | | salt solution
CH ₃ COO-, Na+(aq) | | | 9.0 | | | | | | | |